LOAN COPY: RETURN TO AFWL TECHNICAL LIBRAR KIRTLAND AFB. N. M.

Simulation Model of a Single-Stage Lithium Bromide -Water Absorption Cooling Unit

David Miao

AUGUST 1978

NASA Technical Paper 1296

Simulation Model of a Single-Stage Lithium Bromide -Water Absorption Cooling Unit

David Miao Lewis Research Center Cleveland, Ohio

Scientific and Technical Information Office

1978

SIMULATION MODEL OF A SINGLE-STAGE LITHIUM BROMIDE - WATER ABSORPTION COOLING UNIT

by David Miao

Lewis Research Center

SUMMARY

The performance and load capability of a given LiBr-H₂O absorption chiller operating with a hot-water heat source depends on six quantities: the inlet temperatures and flow rates of the hot-water source, the cooling-tower water, and the return chiller water. Based on this, a computer model for a single-stage absorption cooling machine has been developed which does not require data relative to the interior characteristics of the machine (heat-transfer rates and surfaces). The model considers both heat-transfer and thermodynamic processes. It consists of two algorithms, one for the design, or reference conditions, and the other for the off-design analysis. It is constructed from the steady-state equations but may also be used for the transient analysis of a cooling system.

The program can be used in an independent mode or as a subroutine, as for example, with TRNSY'S, for the analysis of a cooling system. For a given size of machine the model can be used to predict off-design cooling-system performance, the only input requirements being a set of reference or rated conditions for the machine.

INTRODUCTION

The LiBr-H₂O absorption liquid chiller has been used in the refrigeration and air-conditioning industry for some time. One of the primary reasons for using this type of machine is that steam or hot water, whichever is available, can be directly used as an energy source to power the machine. This characteristic is particularly attractive for solar-cooling applications.

In a typical solar-cooling application, water heated through the passages of a bank of solar energy collectors is used to power an absorption machine to provide chilled water which in turn is used to air condition the building.

Typically an absorption chiller is designed to handle the maximum expected load of the building. The design point thus represents a set of fixed operating conditions. However, the actual load varies with building heat-transfer characteristics as well as local weather conditions. The design load may seldom be experienced. Since the chilled-water temperature is likely to increase with decreasing heat load (part-load operation), the chiller may be incapable of dehumidification.

An approach is, prior to machine selection, to simulate various loading conditions through a computer model of the machine. The typical models available today are either empirical (ref. 1), or based upon a thermodynamic approach. The former generally represents a specific machine, and therefore its usefulness is limited; the latter is useful for providing a set of design conditions to the machine manufacturer to determine the size of an absorption machine.

A thermodynamic approach can be used for simulating various operating conditions but such a model does not recognize limitations of the heat-transfer processes. A better approach is to take both heat-transfer and thermodynamic processes into consideration. Furthermore, if an existing machine is selected for a specific job, the heat-transfer surfaces in the machine are fixed but often not known, and therefore it will be difficult to determine the capability of the machine over a range of operating conditions. The only known inputs are three sets of inlet flows and temperatures to the machine: namely, the flow rates and corresponding temperatures of the return chilled water, the cooling water, and the incoming hot water. The unknowns required to be established are the corresponding outlet temperatures of the three flow streams. A computer model for handling this type of problem is not generally available. The purpose of this report is to document a method for modeling the system.

THERMODYNAMIC CYCLE

The thermodynamic cycle of the absorption machine is well known (refs. 2 to 4). Figure 1 represents a typical arrangement of a single-stage machine. The machine basically consists of five heat exchangers called a generator, a condenser, an evaporator, an absorber, and a solution heat exchanger. For a heat load imposed on the evaporator E, the LiBr-H₂O strong solution is pumped through the solution heat exchanger X to the generator G. Heat energy is added in the generator G to drive out the refrigerant (in this case, water is the refrigerant). The remaining solution is called the weak solution. A portion of the weak solution is forced through the solution exchanger X and a pressure reducing valve V1 back to the absorber A for the next cycle. To make a strong solution in the absorber A, the refrigerant leaving the generator G must also be brought back to the absorber through a condenser-evaporator path. In the process, the refrigerant is first condensed by removing its latent heat in the condenser C; then in passing

through an expansion valve V2, the pressure and the temperature of the refrigerant are reduced. The refrigerant is evaporated due to heat load addition in the evaporator E. The refrigerant vapor is then brought to the absorber A to be absorbed. When the heat of absorption is removed, the strong solution is restored and the new cycle begins.

Most commercial machines are built on this basis. To simulate machine performance, a thermodynamic cycle analysis is used to perform heat balance calculations in order to establish heat input and cooling requirement for a refrigeration load. Heat inputs and outputs of the machine are marked in figure 1. The solid arrow lines indicate the direction of heat flow as well as fluid flow interior to the machine while the dashed lines indicate heat or fluid flowing into or out of the machine. Figure 1 is used to construct the thermodynamic portion of the machine model.

To perform such calculations, thermodynamic properties of the water and the LiBr-H₂O solution are also needed. Such information is readily found in reference 2 (the formulas used may be found in appendix A).

HEAT-TRANSFER CONSIDERATIONS

The thermodynamic analysis determines the cycle temperatures and the required heat flows for the five heat exchangers in the absorption machine as shown in figure 1. For a given refrigeration load, the heat exchangers must be designed to satisfy the aforementioned requirements. Once the heat exchangers are designed, the heat-transfer surfaces are fixed and heat transfer is limited by the surfaces provided in the machine. Therefore, for all operating loads the performance of the machine is determined from the actual heat-transfer surface areas.

In terms of heat-transfer processes on the LiBr-H₂O solution side, the heat exchangers may be classified into two types: The solution heat exchanger X (fig. 1) which deals strictly with sensible heat transfer is one type - and the other four: G, A, E, and C (fig. 1) which involve latent heat are another type. Heat exchangers G and A deal also with the heat of absorption, but since their heat-transfer coefficients are high and their temperature profiles are fairly constant, the heat-transfer analysis is treated in the same manner as those of exchangers E and C. The following equations (ref. 5) are used for these four exchangers:

$$EFFN = \frac{T_1 - T_2}{T_1 - T} \tag{1}$$

where

EFFN temperature effectiveness of heat exchanger

T₁ inlet temperature of heating or cooling medium

T₂ outlet temperature of heating or cooling medium

temperature of LiBr-H₂O solution of refrigerant (water) undergoing evaporation, absorption, or condensation process

To relate the temperature field to the heat transfer, EFFN is rewritten as

$$EFFN = 1 - e^{-UA/GC}p$$
 (2)

where

U overall heat-transfer coefficient of heat exchanger

A total heat-transfer surface

G flow rate of heating or cooling medium

C_p heat capacity of medium

Equations (1) and (2) are used to solve for the required outlet temperatures T2's of the four heat exchangers involving external fluid flows. Ideally, if all temperatures and flow rates are given at the design load, equations (1) and (2) should resolve four UA's for that machine.

To simulate various heat loads other than the design, the corresponding UA's must be calculated from additional equations so that equations (1) and (2) can be used to obtain the various outlet temperatures T₂'s. However, the information about the heat-transfer surface is usually not available and the UA terms are inseparable. Therefore, the next equations are derived on the UA term basis.

Heat exchangers of this kind are typical shell-tube type. The cooling or heating medium is usually on the tube side, and the refrigerant (water) or LiBr-H₂O solution is on the shell side. The heat-transfer process is governed by the mechanism of the fluid flow on both sides and the tube wall thermal resistance. By definition U is written as

$$\frac{1}{U} - \frac{1}{h_{w}} + \frac{1}{h} + R_{t} + F \tag{3a}$$

where

h, tube-side coefficient due to forced convection

h shell-side coefficient

F sum of fouling factors on both sides

The R_t term in formula (3a) is a function of the tube wall thickness and the material of construction. Typically, its magnitude is very small because of low pressure operation and the use of high conductivity copper based tube material.

The design or selected fouling factor F (ref. 6) is also rather small. The true fouling factor varies with water conditioning and plant operation and cannot be established without test data. Both R_{t} and F may be considered constant throughout machine operation.

The h term, due to latent heat transfer, is very high for a good cost effective heat exchanger design. The h value for boiling water or steam condensation may be on the order of two to six times the forced convection coefficient $h_{\mathbf{w}}$ (ref. 7). Therefore, it is not a strong factor on the overall heat-transfer coefficient U, which may be conveniently written as

$$U = h_{\mathbf{W}} \left(\frac{1}{1 + h_{\mathbf{W}} R} \right) \tag{3b}$$

where R is the sum of the resistances $(1/h) + R_t + F$.

Equation (3b) implies that U can be found if h_w is known.

To find h_w on the tube side, the following forced convection formula for turbulent flow (ref. 7) is used:

$$\frac{h_{w}D}{k} = (0.23) \left(\frac{DG}{\mu A_{c}}\right)^{0.8} \left(\frac{C_{p}\mu}{K}\right)^{0.4}$$
 (4a)

where

D inside diameter of tube

K thermal conductivity

μ viscosity

A, flow area

Equation (4a) indicates that the change of $h_{\mathbf{w}}$ is sensitive to the changes of the flow rate G (eight-tenth power function) but less dependent on the heat transport properties. Furthermore, the fluid temperature variations for an absorption machine are rather small, especially in a solar application; thus these temperature dependent properties remain practically constant. Therefore equation (4a) may be rewritten as

$$h_{w} \propto G^{0.8}$$

Since proportionality can be established, $h_{\mathbf{w}}$ may be written as follows in terms of a reference condition with the subscript 0:

$$h_{\mathbf{W}} = \left(\frac{G}{G_0}\right)^{0.8} h_{\mathbf{W}0} \tag{4b}$$

$$U_0 = h_{w0} \left(\frac{1}{1 + h_{w0} R_0} \right) \tag{3}$$

By combining equations (3b), (3c), and (4b) and solving for U, we obtain

$$U = \left(\frac{G}{G_0}\right)^{0.8} \left(\frac{1 + h_{w0}R_0}{1 + h_{w}R}\right) U_0$$
 (3d)

As long as the term h_wR is not substantially different from h_w0R_0 , the factor $(1+h_w0R_0)/(1+h_wR)$ is approaching unity. If this term is assumed to be one, the expected error in U is 5 to 10 percent. Under the worst conditions, the error may be as high as 20 percent. Therefore, equation (3d) may be reduced to

$$U = \left(\frac{G}{G_0}\right)^{0.8} U_0$$

or

$$UA = \left(\frac{G}{G_0}\right)^{0.8} (UA)_0 \tag{3e}$$

Equation (3e) implies that, if a reference condition is known, the UA term at other conditions can be found given the right flow proportions. To find a reference UA, equations (1) and (2) must be used and flow rates are referred to the reference condition. Using actual measured values in the aforementioned formulas instead of the machine design values for the reference point is desirable wherever possible.

The second type of heat exchanger in the absorption machine is a liquid to liquid exchanger (exchanger X in fig. 1). This exchanger is placed in the absorption circuit to improve cycle efficiency. It is also typical of a shell-tube type with a true counterflow arrangement for better heat recovery. The strong solution (rich with water refrigerant)

is pumped through the tubes and the weak solution flows across the tube bundles, with flow deflecting baffles. As was pointed out previously, the heat-transfer rate is a strong function of the flow rate. The strong solution flow rate is greater than that of the weak one. To achieve a high heat-transfer coefficient on the tube side, it is natural for the heat exchanger designer to place the strong solution in the tubes. In addition, the better heat transport properties of the strong solution (more water content) aid in achieving a high coefficient. The lower shell-side coefficient of the weak solution can be improved by using spaced baffles.

Equation (4a) is used to calculate the tube-side coefficient. Equation (4b) is also applicable if the heat transport properties remain practically constant.

As indicated previously, equation (4a) or (4b) is applicable for turbulent flow. For a true counterflow type of heat exchanger, or single-tube pass arrangement, the velocity in the tubes may be reduced under some part load operation. It is possible the flow pattern may shift into the laminar region. Then equation (4a) or (4b) would not be applicable, and the formula for laminar flow (ref. 7) would have to be used.

Since this report is concerned with the simulation of a previously designed machine without knowing the interior arrangement of the heat-transfer surface areas, the laminar formula, even if it is available, is probably not useful for model construction. How-ever, it is reasonable to assume that the turbulent flow formula is used for calculating the tube-side heat-transfer coefficient. In these machines, the heat exchanger with longer tube lengths (thus small flow area and high velocity in the tube) is commonly seen in commercial machines.

The formula for the shell-side coefficient (ref. 7) may be written as follows because the heat transport properties remain practically constant:

$$\frac{h_{gw}D_e}{K} = 0.33 \left(\frac{D_eG_w}{\mu A_{cross}}\right)^{0.6} \left(\frac{\mu C_p}{K}\right)^{0.3}$$

 \mathbf{or}

$$h_{gw} \propto G_w^{0.6} \tag{5}$$

where

D_e equivalent diameter

 $\mathbf{h}_{\underline{o}\mathbf{w}}$ coefficient of weak solution flow rate

A_{cross} flow passage area measured along shell inside diameter

Unlike the tube-side formula, equation (5) is not restricted by the turbulent flow. The shell-side coefficient can be increased by means of closer baffle spacings.

Therefore, it is reasonable to assume that the weak solution with less flow rate is on the shell side.

The relation between the overall heat transfer and the individual coefficients is the same as that of equation (3a). In this case the controlling resistance is on the tube side because of the single tube pass arrangement. The magnitude may be on the order of the shell-side coefficient. Since heat-transfer coefficients on both sides are poor, the magnitude of $(1/h_w) + (1/h)$ in equation (3a) is much larger than that of R_t and F (perhaps 10 times larger); therefore, R_t and F are neglected and equation (3a) may be rewritten as

$$\frac{1}{U_{x}} = \frac{1}{h_{gs}} + \frac{1}{h_{gw}}$$
 (6a)

where

x refers to solution exchanger

gs refers to strong solution

gw refers to weak solution

For a referenced condition, equation (6a) becomes

$$\frac{1}{U_{x0}} = \frac{1}{h_{gs0}} + \frac{1}{h_{gw0}}$$
 (6b)

Once again for a given machine, where the interior construction of the machine is not known, equation (6b) cannot be solved without making assumptions. If h_{gs0} and h_{gw0} are assumed equal, equation (6b) becomes

$$h_{gs0} = h_{gw0} = 2U_{x0}$$
 (7)

By combining equations (7) and (4a) or (5), h_{gs} and h_{gw} can be obtained for other simulated conditions; specifically

$$h_{gs} = \left(\frac{G_s}{G_{s0}}\right)^{0.8} h_{gs0} = \left(\frac{G_s}{G_{s0}}\right)^{0.8} (2U_0)$$
 (8)

$$h_{gw} = \frac{G_w}{G_{w0}}^{0.6} h_{gw0} = \left(\frac{G_w}{G_{w0}}\right)^{0.6} (2U_0)$$
 (9)

Then substituting equations (8) and (9) into equation (6a) and rearranging the terms yield

$$U_{x} = (2U_{x0}) \left[\frac{1}{\left(\frac{G_{s0}}{G_{s}}\right)^{0.8} + \left(\frac{G_{w0}}{G_{w}}\right)^{0.6}} \right]$$
(10)

Since the heat-transfer surface area is fixed, equation (10) may be written as

$$(UA)_{x} = 2(UA)_{x0} \left[\frac{1}{\left(\frac{G_{s0}}{G_{s}}\right)^{0.8} + \left(\frac{G_{w0}}{G_{w}}\right)^{0.6}} \right]$$
 (11a)

Equation (11a) again shows that the overall heat-transfer rate at any other condition can be established through a known reference condition (design or test). Equations (8) and (9) can also be extended to include the property corrections if better accuracy is desired. The heat transport properties except thermal conductivity may be found in reference 3. For thermal conductivity values for various LiBr-H₂O solutions, a fraction of water conductivity proportional to water concentration are suggested. In general these effects on heat-transfer coefficients are small and will not be taken into consideration at this time.

The aforementioned equations were derived on the assumption that $h_{gs0} = h_{gw0}$; the assumption appears valid because (1) the fluid properties on both shell and tube sides are similar and (2) the flow rates are not substantially different within the operating range of the solution concentration. However, if h_{gs0} is substantially different from h_{gw0} , equation (11a) may be generalized as

$$(UA)_{x} = (F1)(UA)_{x0}$$

$$\left(\frac{G_{s0}}{G_{s}}\right)^{0.8} + (F2)\left(\frac{G_{w0}}{G_{w}}\right)^{0.6}$$
(11b)

where, for example,

Equation (11b) may be useful to experimentally determine the actual values of F1 and F2 for use in the program for a given machine.

Equation (11a) or (11b) can be solved if $(UA)_{x0}$ is known or may be found from a given set of the design temperatures. The effectiveness is given in terms of the temperatures (refs. 1 and 4) as

$$EFFNX = \frac{T_g - T_5}{T_g - T_a}$$
 (12)

where

 $\mathbf{T}_{\mathbf{g}}$ temperature of generator

T₅ outlet temperature of weak solution

T_a temperature of absorber

In general the exchanger is designed with the effectiveness EFFNX $_0$ = 0.7 to 0.8. If T_5 in equation (12) for the design load is not known, the relation between EFFNX $_0$ and T_{50} may be established by heat balance (ref. 1).

When EFFNX $_0$ is found together with flow rates G_{s0} and G_{w0} and the solution heat capacities C_{s0} and C_{w0} , then (UA) $_{x0}$ is calculated from the following equation:

EFFNX =
$$\frac{1 - e^{-NTU_{x} \left[(1 - (C_{min}/C_{max}) \right]}}{1 - \left(\frac{C_{min}}{C_{max}} \right) e^{-NTU_{x} \left[1 - (C_{min}/C_{max}) \right]}}$$
(13)

where

$$\begin{aligned} & \text{NTU}_{\mathbf{x}} & & \text{(UA)}_{\mathbf{x}} / \text{C}_{\min} \\ & \text{C}_{\min} & & \text{G}_{\mathbf{w}} \text{C}_{\mathbf{w}} \\ & \text{C}_{\max} & & \text{G}_{\mathbf{s}} \text{C}_{\mathbf{s}} \end{aligned}$$

 C_{***} heat capacity of weak solution

C heat capacity of strong solution

The subscript 0 used previously has been deliberately omitted in equations (12) and (13) for the purpose of generalization. Then $C_{\min} = (G_w C_w)$ and $C_{\max} = (G_s C_s)$ because $G_w < G_s$ and $C_w < C_s$ for LiBr-H₂O absorption machine. The (UA)_{x0} is solved implicitly in equation (13).

OTHER CONSIDERATIONS

The equations derived in the previous section together with the thermodynamic equations discussed in the section THERMODYNAMIC CYCLE are the working formulas for the five heat exchangers to be used in the construction of the simulation model. In addition to these formulas, heat losses, pump capacity, operating range of the solution concentrations, and operating temperature limits should be included. Unfortunately machine construction does vary with the design approach of different manufacturers, and the construction information is usually not available. It is difficult to generalize all the limitations to be accommodated by the model. Nevertheless, some of the important considerations that should be taken into account follow.

Heat Losses

The heat losses vary with the specific design and the ambient environment in which the machine is installed. Heat may leak out of or into the machine, and between the partition shells separating the heat exchangers in the machine. The result is that additional heat supply is required to accommodate these losses. To account for these losses, a simplistic approach is to add a fixed percentage to the heat supply. A few percent may be sufficient for the type machine considered herein. The thermodynamic equations (appendix A) may be modified as follows:

$$Q_{G} = (G_{W}H_{5} - G_{S}H_{1} + G_{R}H_{7})(FGQ)$$
(14)

$$Q_C = G_R(H_7 - H_8) \left[1 + \left(\frac{Q_G}{Q_G + Q_E} \right) (1 - F_{QG}) \right]$$
 (15)

$$Q_{A} = (G_{w}^{H_{5}} - G_{s}^{H_{1}} + G_{R}^{H_{10}}) \left[1 + \left(\frac{Q_{G}}{Q_{G} + Q_{E}} \right) (1 - F_{QG}) \right]$$
(16)

where

 $\mathbf{F}_{\mathbf{QG}}$ multiplication factor

 $F_{OG} = 1$ (no heat loss considered)

 $F_{QG} = 1.02$ (equivalent 2 percent loss)

Solution Pump Capacity

Normally the pump capacity is chosen to meet the design load. For part load operation, the required flow rate may or may not exceed the maximum capacity. For a particular load demand, if heat source temperature is low and/or the cooling water temperature is high, the machine, based on the thermodynamic cycle analysis, tends to demand more solution flow. Since the flow control is not known and varies somewhat with different machines, it is assumed that the solution flow rate cannot exceed the capacity of the design point.

Concentration of the LiBr-H₂O Solution

For an absorption process to exist in operation, there are limits on the solution concentrations. If the concentration is too rich, crystallization will occur. If the concentration is too lean, no absorption process will occur. Reference 2 suggested that the concentrations should be kept within 0.5 to 0.65 range. For this model a range from 0.4 to 0.68 has been used.

Temperatures and Temperature Differences

The temperature limitations, like the solution concentrations, are set for the operable absorption process. Usually these are the outlet temperatures of the external fluids in heat exchanger G, C, A, and E (fig. 1). The limits of these temperatures have been placed in the program (see appendix B).

In addition to the temperature limits, the temperature difference across the heat exchanger surfaces are also limited by the heat-transfer processes. In general the temperature differences between the two heat exchange mediums at outlet condition will be used for setting the limits (see appendix B).

When the aforementioned limits and the concentration limits are properly set, the solution heat exchanger temperature as well as the pressure limits may be neglected.

MODELING ALGORITHM

With the necessary equations and the limiting conditions established, the next step is to formulate an algorithm for computer operation. The desired solution for a given set of inputs is the one that achieves the lowest possible outlet temperature of the chilled water. The heat balance is not only required to satisfy the thermodynamic analysis but also simultaneously satisfy the heat exchanger equations.

The model consists of two different algorithms. One part is used to solve for the reference or design conditions. Another part is used to solve for the off-design condition based on the established reference condition. The second part is simply to perform an internal heat balance to establish the corresponding outlet temperatures of the three flow streams, namely hot water GH, cooling water GC, and chilled water GE. The calculation sequence for this part is first outlined as follows:

- (1) Input GH, GC, GE, TH1, TA1, TE1 and an off-design tonnage, (see fig. 1).
- (2) Calculate flow rate per ton for flow GH, GC, and GE.
- (3) Calculate effectiveness (eq. (2)) for exchanger G, C, A, and E.
- (4) Calculate TE2, TE, TH2, and TG.
- (5) Calculate TC2 with an assumed COP.
- (6) Assume TA.
- (7) Calculate TC.
- (8) If TA or TC exceed limits, change tonnage.
- (9) Calculate TG, TC, TA, and TE with newly assumed tonnage.
- (10) Calculate solution concentration.
- (11) If X1 or X4 exceeds limits, change tonnage.
- (12) Calculate enthalpies H8 and H10 of refrigerant at outlets of condenser C and evaporator E, respectively.
- (13) Calculate refrigerant flow GR and solution flows GS and GW, respectively.
- (14) Calculate effectiveness EFFNX of solution exchanger.
- (15) Calculate two outlet temperatures T3 and T5 of solution exchanger.
- (16) Calculate refrigerant enthalpy H7 at outlet of generator G, weak solution enthalpy H5 at outlet of solution exchanger X, and strong solution enthalpy H, at outlet of absorber A.
- (17) Calculate generator heat QG, condenser heat QC, and absorber heat QA.
- (18) Calculate COP.
- (19) If TA is not agreeable with assumed value, adjust TA to suit.
- (20) If COP is not agreeable with assumed value, adjust COP to suit.
- (21) Check temperature difference limits.
- (22) Check pumping rate limits.
- (23) Check concentration limits.
- (24) Force tonnage to maximum.

- (25) Check chilled water outlet temperature TE2 at set point.
- (26) Calculate pressure PE and PC.

To establish the reference conditions, several of the aforementioned indicated steps are repeated. The algorithm used depends upon the information available.

If all the design or reference temperatures are given but the flow rates are not, steps (10) to (18) and step (26) are repeated. The flow rates and all reference (UA)'s are the calculated outputs. The effectiveness of the solution heat exchanger can be calculated from the known temperatures (eq. (12) as an input to the program).

If all three external flow rates are known instead of their outlet temperatures, steps (1) to (18) and step (26) are repeated. In this case the corresponding outlet temperatures are determined.

If the outlet temperature of the solution heat exchanger T5 or its effectiveness is not given, an assumed effectiveness must be used as an input until a rated reference tonnage is found.

PROGRAM DESCRIPTION

The computer program was written in FORTRAN IV language. It can be used as a subroutine to simulate the absorption machine performance in a cooling system. Although the equations derived are steady-state type, no restriction is imposed for use in the transient analysis of a cooling system.

When used as a subroutine, the program may have to be modified to accept a set of the design or the test conditions. The flow rates and the inlet and outlet temperatures of the three external fluid streams are system connected to run the simulation. If additional outputs such as heat loads, COP, and operating pressures are required, they may be system linked or printed out for analysis.

When used as an independent program, the first case is treated as the reference case. The program calculates additionally needed reference values and stores these values automatically in the program. Starting with the next case, the user inputs as many off-design cases as are desired. NAMELIST input is used in the program.

All tolerances for the limitation conditions discussed previously have been prestored in the program but can be changed as desired. The units system used to perform the calculation is metric but provision to use British units for inputs and outputs is included. Changing either the units or the tolerances shall be discussed in the next section and appendix B.

2

OPERATION OF THE PROGRAM

Use as a Subroutine

If the program is used as a subroutine, the reference data and program controls must be inserted as data statements or their equivalent by the user. The required data are UAGO, UACO, UAEO, UAAO, UAXO, GSO, GWO, and TONO. The controls are FQG, METRIC, KLBHR, and JWRITE (see appendixes B and C).

The input variables are currently placed in an array called XIN. These variables (listed in order), are GHT, GCT, GET, TH1, GA1, TE1, and TONX (see appendixes B and C).

The output variables are arranged in an array OUT. These variables are GHT, GCT, GET, TH2, TC2, TE2, and TON. If additional outputs such as COP, PC, and PE are required, the user may place these variables in the additional locations of array OUT (see appendixes B and C).

Use as the Main Program

If the program is used independently, the reference data must be calculated from this program based upon the available design or experimental informations. The input variables in this case will be TH2, TA2, or TC2, TE2, TH1, TA1, TE1, TG, TC, TA, TE, TON0, TONX, KLBHR, METRIC, and JREF (see appendix B and fig. 1). TONX is the initial guess of the actual load. The data are entered via a NAMELIST read and are for reference case. The NAMELIST name is REF. The first tabulated output will be the results of the design conditions and the table is identified with a case marked 0.

To run other cases with fixed heat-transfer surfaces (the same machine), additional cases are placed in the run stream with a NAMELIST name of VAR. As many cases as desired can be run. The input for these cases are GH, CC, GE, TH1, TA1, TE1, and TONX (see appendixes B and C). The outputs are tabulated as before, and the case is identified with a case number greater than 0.

The convergence is controlled by KTA, KCOP, KTONI, and KTON2. If the number of the iterations is excessive, the output may be incorrect. The user must examine the results to decide whether he should increase the number of iterations, or discontinue his run because of exceeding machine operating constraints.

The tolerance controls for the temperatures and concentrations are currently prestored in the program (see appendixes B and C). The values may be changed to suit the user's purpose.

SAMPLE CALCULATIONS

Two sample computer printouts are included to demonstrate the use of the program in appendix C.

Sample 1 shows that, for a given set of the design conditions, the program not only finds the correct design load but generates the results for the off-design loads as well.

The absorption machine used in the sample calculations is a TRANE model C1H (ref. 6). This model was designed for a nominal rated tonnage at 174 tons. The print-out table (case 0) shows that the calculated tonnages agree with the design load. The out-put of this case is then stored in the program as the reference data of the machine to be used for the off-design runs.

A total of 130 off-design cases (the off-design loads and operating conditions in table 2C1H of ref. 6), have been run with the program. Most of the calculated tonnages agree with the data in reference 6 within 2 percent and generally are slightly greater than the table values (two typical cases are shown in appendix C). In some of the cases, however, the calculated values are high by 9 percent. These cases usually are associated with the extremely high or low outlet temperature of the chilled water. All cases were run on the assumption that the nominal design flow rates were chosen to establish the rated table values. If these flow rates are not nominal but varied within the design range, the program calculated tonnages can be brought to agreement with those tables indicated.

Sample 2 was intended to show that, with minor changes, the program can be used as a subroutine in a system program. In this case the system program is TRNSYS (ref. 1). Sample 2 is a solar assisted building cooling system modeled with TRNSYS program (see appendix C).

CONCLUDING REMARKS

A computer model of a LiBr-H₂O single-stage absorption machine has been developed. By utilizing a given set of design data but without knowing the interior characteristics of the machine, the off-design performance can be simulated or evaluated. Although the model is not validated experimentally, it can be a useful tool for analyzing the capability of a given machine, or for studying the machine performance in a cooling system.

1.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, May 16, 1978,
776-22.

APPENDIX A

SYMBOL LIST, THERMODYNAMIC FORMULAS,

AND EQUATIONS FROM REFERENCE 1

Strong concentration (X1 > 0.5):

$$X1 = \frac{(49.04 + 1.125 \text{ TA} - \text{TE})}{(134.65 + 0.47 \text{ TA})}$$
 kg LiBr kg solution

Weak concentration (X4 < 0.65):

$$X4 = \frac{(49.04 + 1.125 \text{ TG - TC})}{(134.65 + 0.47 \text{ TG})} \frac{\text{kg LiBr}}{\text{kg solution}}$$

Enthalpy of condenser outlet:

$$H8 = (TC - 25)$$
 kcal/kg

Enthalpy of evaporator outlet:

$$H10 = (572.8 + 0.417 \text{ TE})$$
 kcal/kg

Refrigerant flow:

$$GR = \frac{QE}{(H10 - H8)} \frac{kg}{hr}$$

Strong solution flow:

$$GS = GR \frac{X4}{(X4 - X1)} \frac{kg}{hr}$$

Weak solution flow:

$$GN = GR \frac{X1}{(X4 - X1)} \frac{kg}{hr}$$

Heat capacity of strong solution:

$$CX1 = 1.01 - 1.23(X1) + 0.48(X1)^2$$
 $kcal/(kg)(^{\circ}C)$

Heat capacity of weak solution:

$$CX4 = 1.01 - 1.23(X4) + 0.48(X4)^2$$
 $kcal/(kg)(^{\circ}C)$

Outlet temperature of weak solution

$$T5 = TG - (EFFNX)(TG - TA)$$
 ^OC

Outlet temperature of strong solution:

$$T3 = TA + (EFFNX) \left(\frac{X1}{X4}\right) \left(\frac{CX4}{CX1}\right) (TG - TA)$$

Enthalpy of absorber outlet:

$$H1 = \left[42.81 - 425.92(X1) + 404.67(X1)^{2}\right] + \left[1.01 - 1.23(X1) + 0.48(X1)^{2}\right](TA) \quad \text{kcal/kg}$$

Enthalpy of weak solution at heat exchanger outlet:

H5 =
$$[42.81 - 425.92(X4) + 404.67(X4)^{2}] + [1.01 - 1.23(X4) + 0.48(X4)^{2}](T5)$$
 kcal/kg

Enthalpy of refrigerant at generator outlet:

$$H7 = (572.8 + 0.46 \text{ TG} - 0.043 \text{ TC})$$
 kcal/kg

Condenser heat load:

$$QC = (GR)(H7 - H8)$$
 kcal/hr

Generator heat load:

$$QG = (GW)(H5) + (GR)(H7) - (GS)(H1)$$
 kcal/hr

Absorber heat load:

$$QA = (GW)(H5) + (GR)(H10) - (GS)(H1)$$
 kcal/hr

Coefficient of performance:

$$COP = \frac{QE}{QG}$$

Evaporator heat load:

$$QE = 3024.0$$
 kcal/hr

Evaporator pressure:

PE = antilog₁₀ 7.8553 -
$$\frac{1555}{\text{TE} + 273.15}$$
 - $\frac{11.2414 \times 10^4}{(\text{TE} + 273.15)^2}$ mm Hg

Condenser pressure:

PC = antilog₁₀ 7.8553 -
$$\frac{1555}{\text{TC} + 273.15}$$
 - $\frac{11.2414 \times 10^4}{(\text{TC} + 273.15)^2}$ mm Hg

APPENDIX B

SYMBOL LIST FOR HEAT-TRANSFER CALCULATIONS IN COMPUTER PROGRAM

Flow rates, gal/min, lb/hr, kg/hr						
	GH	(Hot water supply)				
	GC	(Cooling water supply)				
	GA	(Cooling Water supply)				
	GE	(Returning chilled water)				
	GR	(Refrigerant - water)				
	GW	(Weak solution)				
	GS	(Strong solution)				
Temperatures, ^O F, ^O C						
	TH1, TH2	(Inlet and outlet conditions of GH)				
	TC1, TC12, or TA2	(Inlet and outlet conditions of GA)				
	TC12, TC2	(Inlet and outlet conditions of GC)				
	TE1, TE2	(Inlet and outlet conditions of GE)				
	TG	(Generator)				
	TC	(Condenser)				
	TA	(Absorber)				
	TE	(Evaporator)				
Heat-transfer rates, Btu/(hr)(OF), cal/(hr)(OC)						
	UAG	(Generator)				
	UAC	(Condenser)				
	UAA	(Absorber)				
	UAE	(Evaporator)				
	UAX	(Heat exchanger)				
	First digit	Overall heat-transfer coefficient				
	Second digit	Overall heat-transfer surface				
	Third digit	Component symbol				

Number of heat-transfer units

NTUG (Generator)

NTUC (Condenser)

NTUA (Absorber)

NTUE (Evaporator)

NTUX (Heat exchanger)

Heat-transfer effectiveness

EFFNG (Generator)

EFFNC (Condenser)

EFFNA (Absorber)

EFFNE (Evaporator)

EFFNX (Heat exchanger)

(A digit 0 following aforementioned symbols signifies a reference or a design condition being used. A digit T following aforementioned symbols and symbols in appendix A signifies total quantities.)

TON0 (Reference refrigerant tonnage)

TON (Tonnage calculated)

TONX (Tonnage variable)

COPX (COP variable)

TAX (TA variable)

GSC1 (Product of strong solution flow and heat capacity)

GWC4 (Product of weak solution flow and heat capacity)

CRATIO =GWC4/GSC4

EXPX (Exponential function for heat exchanger)

Controls and limits

METRIC (Input to be metric units > 0)

KLBHR (Input to be lb/hr > 0)

JWRITE (Write output > 0)

KTA (TA converging cycle = 50)

KCOP (COP converging cycle = 50)

KTON1 and KTON2 (TONX converging cycle = 100)

ACONST = 1.0° C Limits of (TE2 - TE)

BCONST = 1.296° C Limits of (TA - TC12)

CCONST = 1.425° C Limits of (TC - TC2)

DCONST = 1.919° C Limits of (TH1 - TG)

TELO - 2,22° C (Lowest temperature limits of TE)

TE2SET = 4.43° C (Lowest temperature limits of TE2)

COPHI = 0.93 (Highest limits of COP)

COPLO = 0.60 (Lowest limits of COP)

FQG = 1.0 (No heat loss added)

EFFNX = 0.71428 (Initialization of EFFNX)

APPENDIX C

SAMPLES 1 AND 2 WITH PROGRAM LISTINGS

Sample 1: LiBr-H₂O Single-Stage Absorption Machine Used as a Main Program

```
1 *
        С
              USE THIS TO EVALUATE OUTPUT OF AN ABSOPPTION MACHINE WITH FIXED --UA--
 2*
        С
              ALL WATER SPECIFIC HEAT & DENSITY ASSUMED TO BE -- 1.0-- EXCEPT HOT WATER
 3≄
               DIMENSION XIN(1D), PAR(13), XNTU(6), EFFN(6)
 4 *
                          X(6),Y(6),GIN(3)
               DIMENSION
 5#
               DIMENSION
                         TONGVN(160), TONCAL(160)
 6*
 7 ×
        C--METRIC=D, BRITISH UNITS USED. -----JWRITE=1 WRITE ALL, JWRITE=G NO WRITE
             KLBHR=0,GPM FOR FLOW INPUT. ---- KLBHR=1, LBS/HR INPUT
 8*
 9*
               DATA METRIC/O/, KLBHR/C/, JWRITE/1/
10*
               DATA POKO/.4536/
114
                     TFTC1/32./,TFTC2/1.8/
               DATA
12*
               DATA
                    CALBTU/3.96831/
13#
        С
14*
        C
15*
        C
              CONST1 & CONST4 ARE CONCENTRATION LIMITS
16*
               DATA CONSTI/0.4/, CONST4/0.68/
17*
        C
              A-B-C-D-CONST ARE LIMITS FOR EVAP., ABSORP., COND.,& GENERATOR
19*
               DATA ACONST/1./,BCONST/1.296/,CCONST/1.423/,DCONST/1.919/
104
        C
20*
               DATA TELO/2.22/, TE2SET/4.43/
21*
        C
              COP LIMITS
                               ---HEAT LCSS FACTOR
               DATA COPHI/D.93/, COPLO/0.60/, FQG/1.0/
22*
23*
        C
               EFFNX=0.71428
                                 FOR T5=135 F
                                                   EFFNX=(TG-T5)/(TG-TA)
24*
               DATA EFFNX/0.71428/
25*
        C
26*
               DIMENSION XINRSV(10)
27*
               DIMENSION AJTE2(4)
28*
               DATA
                         AJTE2(1), AJTE2(2), AJTE2(3), AJTE2(4) / 3HTH1 , 3HTE1 ,
29#
              1 3HTH2 , 3HTE2 /
30×
               DIMENSION AJREF(2)
31 *
               DATA AJREF(1), AJREF(2)/ 3HTC2 , 3HTA2 /
32*
               DATA JTE2 / G /
33≉
               DTLIM=C.25
               DTLIM=C.1
344
35#
              NAMELIST /REF/ TH2, TA2, TC2, TE2, TH1, TA1, TE1, TG, TC, TA, TE, TONG,
36*
              1 KLBHR, METRIC, JREF, CONST1, CONST4, ACONST, BCONST, CCONST, DCONST,
37₩
              2 COPHI, COPLO, FQG, EFFNX, TELO, TE2 SET
₹8₩
               NAMELIST /VAR/ GH,GC,GE,TH1,TA1,TE1,TONX,JTE2,TE2,TH2,LVAR
39*
40*
           JREF=0,RUN NO REF. -JREF=1,TC2=XIN(2).--JREF=2,TA2 OR TC12=XIN(2)
41#
          300 READ(5, REF)
42*
              LVARED
434
              XIN(1)=TH2
               IF(JREF.EQ.1) XIN(2)=TC2
44*
45*
               IF(JREF.EQ.2) XIN(2)=TA2
               XIN(3)=TE2
46*
47×
               XIN(4)=TH1
48*
               XIN(5)=TA1
494
               TC1=TA1
5 O *
               XIN(6)=TE1
51*
               XIN(7)=TG
               XIN(8)=TC
52×
53*
               XIN(9)=TA
544
               XIN(10)=TE
55*
               DO 302 I=1,10
56*
               XINRSV(I)=XIN(I)
57≄
          302 CONTINUE
58*
               TC2RSV=TC2
50*
               TA2RSV=TA2
60 ≠
               KERROR=E
61*
        C
62*
        C
63≉
```

```
IF(METRIC.GT.D)
                                  TFTC1=0.0
  64*
  65*
                 IF(METRIC.GT.D)
                                   TFTC2=1.0
  66*
                 IF (METRIC.GT.0)
                                   PDKG=1.0
                 IF(METRIC.GT.D)
  67#
                                  CALBTU=1.0
  68*
                 IF (METRIC.GT.C) BPH=1.0
  69*
          C
  70#
                BPH=500.0
  71*
                IF(KLBHR.GT.B) 6PH=1.0
  72*
          C
  73*
                IF(JREF.GT.0) 60 TO 19
  74*
              7 CONTINUE
  75*
                -----UA VALUES ARE PER TON BASIS-----
  76*
                TONE = TON
  77*
                GSD=GS*PDKG
  78*
                GWD=GW*PDKG
 79*
                GHD=GHT
 80 *
                GED=GET
                GCO=GCT
 81#
 82*
                PAR(1)=UAG*PDKG
 83*
                PAR(2)=UAC*PDKG
 84*
                PAR(3)=UAE*PDKG
 85*
                PAR(4)=UAA*PDKG
 86*
                PAR(S)=UAX*PDKG
 87#
                UAXD=PAR(5)
 88*
 2 Q±
          C
 90*
                INPUT=1
 91*
          С
 92*
            990 CONTINUE
 93*
                JREF=0
                READ(5, VAR, END=999)
 94#
 95*
                XIN(1)=GH
 96*
                XIN(2)=6C
 97*
                XIN(3)=GE
 98*
                XIN(4)=TH1
 99*
                XIN(5)=TA1
100*
                TC1=TA1
101*
                XIN(6)=TE1
132*
                XIN(7)=TONX
103#
                GESAV=XIN(3)
104*
                TE2SAV=TE2
135*
                TH2SAV=TH2
136#
                KERROR=0
107*
         С
               TON IS AN ASSUMED VALUE TO STAPT
108*
                TONX=XIN(7)
109*
                TONREF=TOND*D.5
110*
                TONMIN=TON0+0.1
111*
                TONMAX=TONE*1.2
                IF(XIN(7).LE.TONREF) TONX=TONREF
112*
113*
         C
114#
             19 CONTINUE
115*
         C
116*
                KGC=0
117*
              9 CONTINUE
118#
         С
119*
               ----FLOW PATES ARE PER TON BASIS
120*
         С
                   PER TON BASIS
121*
                QE=3023.9573
122*
                41=D.
123*
                H5=D.
124*
                H7=[.
125*
               H8=0.
126*
                H10=0.
127*
                TON=D.D
128*
               KTON1=0
129*
                KTON2=0
130*
                KTONX=-1
```

```
131*
               X4=0.67
132*
               X1=D.41
133*
               IWRITE=0
134#
            11 CONTINUE
135*
         С
               COPX=.722
136*
               IF(COPX.LE.COPLO.OR.COPX.GE.COPHI) COPX=0.722
137*
               K COP = 0
138*
            16 CONTINUE
                    GH=XIN(1)/TONX*PDKG*BPH*0.975
139*
143*
                    GC=XIN(2)/TONX*PDKG*BPH
141*
                    GE=XIN(3)/TONX*PDKG*BPH
142*
                   TH1=(XIN(4)-TFTC1)/TFTC2
143*
                   TC1=(XIN(5)-TFTC1)/TFTC2
144*
                   TE1=(XIN(6)-TFTC1)/TFTC2
                TE2SVM=(TF2SAV-TFTC1)/TFTC2
145#
146*
               TH2SVM=(TH2SAV-TFTC1)/TFTC2
147#
         С
148*
               IF(JRFF.EQ.O) GO TO 20
149*
               TH2=(XIN(1)-TFTC1)/TFTC2
150*
               TA2=(XIN(2)-TFTC1)/TFTC2
151*
               IF(JREF.EQ.2)
                               TC12=TA2
                              TC2=TA2
152*
               IF(JREF.EQ.1)
153*
               TE2=(XIN(3)-TFTC1)/TFTC2
154#
                 TG=(XIN(7)-TFTC1)/TFTC2
155*
                 TC=(XIN(8)-TFTC1)/TFTC2
156*
                 TA=(XIN(9)-TFTC1)/TFTC2
157≉
                 TE=(XIN(10)-TFTC1)/TFTC2
158*
               GO TO 21
159*
            20 CONTINUE
160*
         С
              ASSUME TUBE SIDE WATER FILM COEF. IS CONTROLLING
161*
               GH1=(XIN(1)/GH0)**0.8
162*
               3C1=(XIN(2)/GCD)**3.8
163*
               GE1=(XIN(3)/GEC)**0.8
1644
         C
165*
               TOTAL BASIS
                               IN METRIC UNITS
166*
               SIN(1)=GH/GH1*TONX
167#
               GIN(2)=GC/GC1*TONX
168*
               GIN(3)=GE/GE1*TONX
169*
         С
170*
               DO 10 I=1.4
171*
               XNTU(I)=PAR(I)/GIN(I)*1.0*TONC
172#
               IF(I.EQ.4) XNTU(I)=PAR(I)/GIN(2)*TONO
                IF(XNTU(I).GE.10.) GO TO 8
173*
174#
               EFFN(I)=1.C-EXP(-XNTU(I))
175*
               GO TO 10
176#
              8 CONTINUE
177*
               EFFN(I)=D.999
178*
            15 CONTINUE
179*
         С
180*
         C
181*
               TE2=TE1-QE/GE
               TH2=TH1-(QE/COPX)/GH
182#
183*
         С
               FOR CHECKING TRANE TABLE FIGURES ONLY
                                                           TE2 +TH2 KNOWN INSTEAD
184*
         С
185*
               IF(JTE2.LF. D ) GO TO 60D
186*
               TE2=TE1
187#
                TH2=TH1
188*
         C
                TE2=TF2SAV
189*
         С
                TH2=TH2SAV
190*
                TEZ=TF2SVM
191*
                TH2=TH2SVM
192*
                TE1=TE2+QF/GE
193#
               TH1=TH2+(QE/COPX)/GH
194#
           600 CONTINUE
195*
         С
196*
         C
197#
               TE=TE1-(TF1-TE2)/EFFN(3)
```

```
198#
                 TG=TH1-(TH1-TH2)/EFFN(1)
 199*
                 TC2=TC1+(1.0+1.0/COPX)*QE/GC
 237*
          C
                ASSUMED A VALUE FOR
 201#
                 TA2=(TC1+TC2) +0.5
 202*
                 TATTC1-(TC1-TA2)/EFFN(4)
                KTA=D
 203*
 204#
             15 CONTINUE
 205#
                 TC=TC2/EFFN(2)-(1.0/EFFN(2)-1.0)*(TC1+EFFN(4)*(TA-TC1))
 206#
                IF(TC.LE.TA) GO TO 40
 207*
                IF(TE.GE.TA)
                               GO TO 41
                IF(TC.GE.TG) GO TO 41
 208#
 209*
          С
             21 CONTINUE
 210*
                 X1=(49.84+1.125*TA-TE)/(134.65+3.47*TA)
 211#
 212*
                 X4=(49.04+1.125*TG-TC)/(134.65+D.47*TG)
                IF(X1.LT.CONST1) GO TO 45
 213#
214#
                IF(X4.LE.X1) GO TO 43
 215*
          С
                H8=TC-25.0
216#
 217#
                H1D=572.8+0.417*TE
 218*
                GR=QE/(H10-H8)
219#
                GS=GR + X4/(X4-X1)
220#
                GW=GS*(X1/X4)
          С
221*
222*
                CX1=1.D1-1.23*X1+D.48*X1**2
223*
                CX4=1.01-1.23*X4+0.48*X4**2
224*
                GSC1=GS *CX1
225*.
                SWC4=GW*CX4
                CRATIO=GWC4/GSC1
226*
227*
                IF(JREF.GT.D) GO TO 22
          C
228*
229*
               ASSUMING ORIGINAL FILM COEF. EQUAL ON BOTH SIDES. -- GW ON SHELL SIDE
         C
230*
                F1=2.0
                F2=1.0
231*
232*
            F1=2,F2=1,HGS=HGW.--F1=1,F2=0,HGS>>HGW.--F1=2.5,F2=2/3,HGS=1.5HGW. FOR UAX
233*
                RGS=((GSC/GS)*(TONG/TONX))**J.8
                RGW=((GWG/GW)*(TOND/TONX)) **G.6
234*
235*
                UAX=F1*UAXO*(1.0/(RGS+F2*RGW))
          C
236#
237*
                 IF(GWC4.6T.GSC1) GO TO 17
                (XNOT/CNOT) *# OWD/XAUXUTAX
238*
239*
                GO TO 18
240#
         C
241*
             17 CONTINUE
242*
                XNTUX=UAX/GSC1*(TOND/TONX)
243#
                CRATIO=GSC1/GWC4
244*
            18 CONTINUE
245*
         C
246#
                IF(ABS(1.P-CRATIO).LT.0.01) GO TO 13
247*
                IF((XNTUX*(1.-CRATIO)).GE.10.) GO TO 12
248*
                EXPX=EXP(-XNTUX*(1.D-CRATIO))
249*
                EFFNX=(1.0-EXPX)/(1.0-CRATIO*FXPX)
250 *
                50 TO 14
251*
         C
252*
            12 CONTINUE
253*
               EFFNX=0.999
254*
               50 TO 14
255#
            13 CONTINUE
256*
               EFFNX=XNTUX/(1.0+XNTUX)
257*
            14 CONTINUE
258*
            22 CONTINUE
259#
         r
260*
         С
261*
               T5=TG-EFFNX+(TG-TA)
               T3=TA+(EFFNX*CRATIO*(TG-TA))
262#
263*
         С
264*
               H1=(42.81-425.92*X1+434.67*X1**2)+CX1*TA
```

```
265*
                H5=(42.81-425.92*X4+484.67*X4**2)+CY4*T5
266#
                H7=572.8+D.46 *TG-D.D43*TC
267#
         r
268*
               FOG=1.C.NO HEAT LOSS --- FOG>1.0.E <2.0.2 HEAT LOSS
269*
                IF(FOG.LE.1.0) FOG=1.0
                0G=(GW*H5-GS*H1+GR*H7)*F06
27N#
                QC=GR*(H7-H8)*(1.0+QG/(QG+QE)*(1.0-FQG))
271*
272*
                QA=(GW*H5-GS*H1+GR*H1D)*(1.0+QG/(QG+QF)*(1.0-FQG))
273*
                COP=OF/OG
274*
         C
275*
                IF(JREF.GT.O) GO TO 60
276*
         C
277*
                TC12=TC1+QA/GC
278*
                TAX=TC1-(TC1-TC12)/EFFN(4)
279
         C
             40 CONTINUE
280*
281*
                IF(TC.LE.TA) TAX=TC
                IF(ABS(TAX-TA).LT.O.DODD1)
282*
                                                 60 TO 41
283*
                IF(KTA.EQ.5D) GO TO 41
                TA=(TAX+TA)*0.5
284#
285*
                KTA=KTA+1
2864
                GO TO 15
287*
             41 CONTINUE
288#
         ۲
289*
                IF(ABS(COPX-COP).LT.0.00001) 60 TO 42
290*
                IF(KCOP.EQ.50) GO TO42
291*
                COPX=(COPX+COP)*D.5
292*
                KCOP=KCOP+1
29 T#
                GO TO 16
294#
             42 CONTINUE
295*
         C.
296#
                X(1)=TE2-TE
                X(2)=TA-TC12
297*
298*
                X(3)=TC-TC2
2994
                X (4)=TH2-TG
300*
                V (1) = ACONST
301×
                Y(2)=BCONST
302*
                Y(3)=CCONST
                Y(4)=DCONST
₹1 ₹±
304±
         С
305*
                DO 47 I=1.4
306*
                IF(X(I).LT.Y(I).AND.KTONX.EQ.1) GO TO 6D
337*
                IF(X(I).LT.Y(I)) GO TO 45
308*
            47 CONTINUE
309*
         С
310*
                IF(X1.GT.CONST1.AND.X4.LT.CONST4.AND.X4.GT.X1) GO TO 46
311*
         С
312*
            45 CONTINUE
313*
                IF(KTON2-100) 49,43,43
314*
            49 CONTINUE
315*
                TONMIN=TONX
316*
                TONX=(TONX+TONMAX)+D.5
317*
                ITONX=IFIX(TONX)
318*
                TONX=TONX + DTLIM
319*
                KTON2=KTON2+1
320*
               GO TO 11
321*
         С
322*
            43 CONTINUE
               IF(KTON1-100) 44,65,65
323*
324*
            44 CONTINUE
325*
                TONMAXETONX
326*
                TONX=(TONY+TONMIN) *0.5
327*
               ITONX=IFIX(TONX)
328×
               IF(TON.LE.O.O.AND.TONX.LE.(TONMIN+1.0)) GO TO 60
329*
               IF(TONX.LE.TON)
                                     GO TO 50
330*
               TONX=FLOAT(ITONX)-1.0
331*
               TONX=TONX - DTLIM
```

```
KTON1=KTON1+1
 332*
 333*
                50 TO 11
 334*
          С
             46 CONTINUE
335*
                IF(KTONX.EQ.1.OR.TONX.LE.D.D) GO TO 6D
336*
                IF(TON.GE.TONX) GO TO 5D
337×
               CHECK MAX. STRONG SOLUTION PUMP RATE -----
338*
          С
                GSTD=GSD*TONC
339*
                GSPUMP=GS*TONX
340*
                IF(GSPUMP.GT.GSTO) GO TO 43
341*
342*
          С
343*
                TON=TONX
344*
                IF(TE2.LT.TE2SET.OR.TE.LE.TELO) 60 TO 48
345*
                50 TO 49
346*
             48 CONTINUE
                TON=TON*(TE1-TE2SET)/(TE1-TE2)
347*
348*
          С
349×
             50 CONTINUE
350*
                IF(KTONX.EQ.1.OR.TON.LE.D.D) GO TO 60
                TONXITON
351*
                KTONX=1
352*
353*
                GO TO 11
354≠
         С
             6D CONTINUE
355*
            65 IF(JREF.GT.D.OR.KTONX.EQ.1.OR.KGC.GE.30)
                                                             GO TO 66
356*
357*
                XIN(3)=XIN(3) \neq (TONX-1.0)/TONX
358*
359*
                GO TO 9
36D*
            66 CONTINUE
         С
361*
362*
         C----ALL SPEC HEAT = 1. -----
363×
364*
                IF(JREF.EQ.D) GO TO 35
365*
                TON=TOND
                YY=(1.-EFFNX*CRATIO)/(1.-EFFNX)
366*
367#
                XNTUX=ALOG(YY)/(1.-CRATIO)
                GH= QG/(TH1-TH2)
368*
369*
                GE= QE/(TE1-TE2)
               IF(JREF.EQ.1) GC=(QA+QC)/(TC2-TC1)
370*
371*
               IF(JREF.EQ.2) GC=QA/(TC12-TC1)
372*
               IF(JREF.EQ.1) TC12=TC1+QA/GC
               IF(JREF.EQ.2) TC2=TC12+QC/GC
373*
374*
                EFFN(1)=(TH1-TH2)/(TH1-TG)
               EFFN(2)=(TC12-TC2)/(TC12-TC)
375*
376#
               EFFN(3)=(TE1-TE2)/(TE1-TE)
377*
               EFFN(4)=(TC1-TC12)/(TC1-TA)
               DO 31 K=1,4
378#
379*
                XNTU(K) = (-1 \cdot ) \neq ALOG(1 \cdot - EFFN(K))
380*
            31 CONTINUE
381*
         C
382*
            35 CONTINUE
383*
               UAG=XNTU(1) *GH
               UAC=XNTU(2)*GC
384*
385*
               UAE=XNTU(3)*GE
               UAA=XNTU(4)*GC
386*
               UAX=XNTUX *GWC4
387*
388#
         C
389*
               A=ALOG(10.0)
               B=1555.D/(TE+273.15)
39D*
391*
               C=11.2414F4/(TE+273.15)**2
               PE=ExP(A*(7.8553-E-C))
392*
393*
               B=1555.0/(TC+273.15)
394≠
               C=11.241454/(TC+273.15)**2
               PC=EXP(A+(7.8553-B-C))
395*
396*
         С
               QG=QG*CALPTU
397#
398*
               QC=QC*CALBTU
```

```
399*
                QE=QE *CALBTU
400*
                QA=QA + CALBTU
471*
                H1=H1*CALBTU
402*
                H5=H5*CALBTU
403#
                H7=H7 + CAL BTU
404*
                H8=H8*CALBTU
435*
                H1D=H1D*CALBTU
406#
         С
407*
                T3=T3*TFTC2+TFTC1
                T5=T5*TFTC2+TFTC1
408*
439*
         C
410*
                TH1=TH1*TFTC2+TFTC1
411*
                TH2=TH2*TFTC2+TFTC1
412*
                TC1=TC1*TFTC2+TFTC1
413*
                TC12=TC12*TFTC2+TFTC1
414*
                TA2=TC12
41 2
                TC2=TC2*TFTC2+TFTC1
416*
                TE1=TE1*TFTC2+TFTC1
417*
                TE2=TF2+TFTC2+TFTC1
418*
                TE =TE *TFTC2+TFTC1
419*
                TA =TA *TFTC2+TFTC1
                TC =TC *TFTC2+TFTC1
420*
                TG =TG *TFTC2+TFTC1
421*
422*
423*
                UAG=UAG/PDKG
424*
                UAC=UAC/PDKG
425*
                UAE=UAE/PDKG
                UAA=UAA/PDKG
426*
427*
                UAX=UAX/PDKG
428*
                GH=GH/PDKG
                GC=GC/PDKG
429*
430*
                GA=GC
                GE=GE/PDKG
431*
                GR=GR/PDKG
432*
433*
                GW=GW/PDKG
                GS=GS/PDKG
434*
435*
                GSC1=ESC1/PDKG
                GWC4=GWC4/PDKG
436*
437#
          С
439*
                QGT=QG*TON
                QCT=QC*TON
439*
447*
                QET=TON
441*
                QAT=QA*TON
442*
                UAGT=UAG*TON
443*
                UACT=UAC*TON
4444
                UAET=UAE*TON
445*
                UAAT=UAA*TON
446*
                GHT=GH*TON/BPH/C.975
447*
                GCT=GC*TON/BPH
                GAT=GCT
448*
449*
                GET=GF * TON/BPH
450 *
                DT12E=TE1-TE2
451*
                DT12A=TA2-TC1
452#
                DT12C=TC2-TA2
453*
                DT126=TH1-TH2
454*
                DTE2=TE2-TE
455*
                DTA2=TA-TA2
456*
                DTC2=TC-TC2
457*
                DTG2=TH2-TG
458*
          С
459*
                IF(KTA.GE.5D.OR.KCOP.GE.5D) GO TO 58
460#
                IF(KTON2.GE.100.OR.KTON1.GE.100) GO TO 58
461*
                IF(JWRITE.EQ.D) GO TO 59
462*
                60 TO 430
             58 CONTINUE
463*
464*
                KERROP=1
          C
465*
```

```
43E IF(METRIC.GT.D) WRITE(6,420)
 466*
            420 FORMAT(1H1,20X, *OUTPUT IS IN SI UNITS DEGREES C, KG/HR, CAL * / )
 467#
 468*
                 IF(METRIC.EQ.O) WRITE(6,421)
            421 FORMAT(1H1,2DX, OUTPUT IS IN U.S. CUSTOMARY UNITS - DEGREES F. GPM
469*
                1, BTU ' / )
 470 *
                IF(KERROR.EQ.1) WRITE(6,431)
 471*
            431 FORMAT(///20X, ********* ITERATIONS FAILED TO CONVERGE
                                                                              ****
472*
                1** • )
 473*
                 IF(METRIC.EQ.O .AND. INPUT.EQ.D) WRITE(6,93) AJREF(JREF)
 474*
                 IF(METRIC.GT.G .AND. INPUT.EQ.D) WRITE(6,193) AJREF(JREF)
 475*
                IF(INPUT.EQ.O) WRITE(6,94) (XIN(I),I=1,10),TONO, JREF, INPUT
 476*
 477#
                 IF(INPUT.EQ.D) GO TO 57
                 JOUT = 1
 4784
 479*
                 IF(JTE2.GT.0) JOUT=3
                IF(METRIC.GT.C) WRITE(6,195) AJTE2(JOUT),AJTE2(JOUT+1)
 483*
                 IF(METRIC.EQ.D) WRITE(6,95) AJTE2(JOUT),AJTE2(JOUT+1)
 481*
 482*
                IF(JTE2.EQ.D)
                1WRITE(6,98) KTA,KCOP,KTON2,KTON1,(XIN(I),I=1,6),TONX,XIN(7),INPUT
483*
                IF(JTE2.GT.D) WRITE(6,98) KTA, KCOP, KTON2, KTON1, XIN(1), XIN(2),
 484*
                1 XIN(3), TH2SAV, XIN(5), TF2SAV, TONX, XIN(7), INPUT
485*
             57 CONTINUE
486#
487#
          C
488*
                WRITE(6,403)
                WRITE(6,402) X1,X4,CX1,CX4,GR,GS,GW,GSC1,GWC4,EXPX,CRATIO,UAX
489#
490*
                WRITE(6,407)
                WRITE(6,402) TA, T5, T3, TG, H1, H5, H7, H8, H10, XNTUX, EFFNX, COP
491*
                WRITE(6,406)
492*
                WRITE(6,405) GE,TE1
                                        ,TE2,TE
                                                   ,XNTU(3),EFFN(3),PE,UAE,QE,GET,UAE
493*
494#
               XT,QET
495*
                WRITE(6,404) GA,TC1
                                        AT, SAT,
                                                   ,XNTU(4),EFFN(4),PE,UAA,QA,GAT,UAA
496*
               XT.QAT
                                                ,XNTU(2),EFFN(2),PC,UAC,OC,GCT,UACT,Q
497#
                WRITE(6,401) GC, TA2, TC2, TC
498*
               XCT
499*
                WRITE(6,400) GH,TH1
                                        , TH2 , TG
                                                   ,XNTU(1),EFFN(1),PC,UAG,QG,GHT,UAG
500*
               XT,QGT
501*
            400 FORMAT(1x,4HG---,7F10.3,5E10.3//)
            401 FORMAT(1x,4HC---,7F10.3,5E10.3/)
502*
            402 FORMAT(1x,4HX---,12F10.3/)
503*
504#
            403 FORMAT(5x,120H
                                       X 1
                                                  X4
                                                             CXI
                                                                       CX4
                                                                                  GR
505*
               χ
                   GS
                                                   SWC4
                              G₩
                                        GSC1
                                                              FXPX
                                                                       CRATIO
                                                                                    UAX
536*
507*
            404 FORMAT(1x,4HA---,7F10.3,5E10.3/)
508#
            405 FORMAT(1X,4HE---,7F10.3,5E10.3/)
509*
            4C6 FORMAT(5X,12BH
                                                            T 2
                                                                       T
                                                                                 NTU
                                    G
510*
               X
                   EFFN
                                         HΙΔ
                                                               GI
                                                                        HAT
                                                                                    OT
511*
               X
                     1
            407 FORMAT(5X,120H
512*
                                       TΔ
                                                  T 5
                                                            T 3
                                                                       TG
513*
                   Н5
               Х
                              H7
                                         H8
                                                    HIP
                                                            NTUX
                                                                       EFFNX
                                                                                    COP
514*
               X
515*
          C
                WRITE(6,96)
516*
517#
                WRITE(6,97) DT12E,DTE2,TE2,DT12A,DTA2,TA2,DT12C,DTC2,TC2,DT12G,DTG
518#
               X2.TH2
             93 FORMAT(10X, TH2-F', 5X, A3, T-F', 5X, TE2-F', 5X, TH1-F', 5X, TC1-F',
519*
520*
               1 5X, "TE1-F", 5X, "TG-F", 6X, "TC-F", 6X, "TA-F", 6X, "TE-F", 4X, "TON-PEF".
               2 5x, "JREF", 5x, "NO." )
521*
522*
            193 FORMAT(10X, *TH2-C*, 5X, A3, *-C*, 5X, *TE2-C*, 5X, *TH1-C*, 5X, *TC1-C*,
               1 5X, "TE1-C", 5X, "TG-C", 6X, "TC-C", 6X, "TA-C", 6X, "TE-C", 4X, "TON-REF",
523*
524*
               2 5X. JREF . 5X. NO. 1
             94 FORMAT(SX,11F10.3,110,3X,13/)
525×
526*
             95 FORMAT(1DX, *KTA
                                       KCOP
                                                  KTON2
                                                                      GHT-GPM
                                                             KTON1
                                                                                 GCT-GP
               14 GET-GPM',5X,A3,'-F
                                             TC1-F',5X,A3,'-F
527#
                                                                 TON-CAL
528*
               2 NO. 1
529*
           195 FORMAT(10X, *KTA
                                       KCOP
                                                  KTON2
                                                             KTON1
                                                                      GHT-KPH
                                                                                 GCT-KP
530*
               1 H
                   GET-KPH*, 5X, A3, *-C
                                             TC1-C*,5X,A3,*-C
                                                                  TON-CAL TON-START
531*
               2 NO. 1
            96 FORMAT(5X,120H
532*
                                     DT12E
                                                DTE 2
                                                           TE2
                                                                      DT12A
                                                                                DTA2
```

```
533*
                            DT12C
                                       DTC2
                                                  TC2
                                                            DT12G
                                                                                  TH2
              X TA2
                                                                       DTG2
534*
                     )
535*
            97 FORMAT(1X,4HTEMP,12F10.3///)
536#
            98 FORMAT(5x,4(18,2x),8F10.3,3x,13/)
537*
         С
538*
            59 CONTINUE
539#
               IF(JREF.GT.D)
                                  GO TO 7
540*
         С
541*
            61 CONTINUE
542*
         C
543*
                TONGVN(INPUT) = XIN(7)
544*
               TONCAL (INPUT) = TON
545*
               INPUT=1+INPUT
546*
                GH=XIN(1)
547*
               GC=XIN(2)
548*
               GE=GESAV
549*
                TH1=XIN(4)
550*
               TA1=XIN(5)
551*
               TE1=XIN(6)
552*
                TONX=XIN(7)
553*
               TE2=TE2SAV
554*
               TH2=TH2SAV
555*
               IF(LVAR.EO.D) GO TO 990
               DO 301 I=1.10
556*
               XINRSV(I)=XIN(I)
557*
558*
           301 CONTINUE
559*
                TC2=TC2RSV
                TA2=TA2RSV
560*
561#
               GO TO 300
562*
           999 CONTINUE
563*
               WRITE(6.601)
                              (TONGVN(M), TONCAL(M), M=1,160)
564*
         C
               WRITE(6,602)
565*
               WRITE(6,602) (M,TONGVN(M),TONCAL(M),M=1,160)
           601 FORMAT(1X, 110HTHE FOLLOWING ARE KNOWN TON VS CALCULATED FOR TRANE
566*
              1 MODEL C1H/DS-ABS1
                                      TH2, TE2, TC1 ARE KNOWN
567*
         C 602 FORMAT(1X,6(4X,2F8.2)/ /(1X,6(4X,2F8.2))/)
568*
569*
           602 FORMAT(1X,6(14,2F8.2)/ /(1X,6(14,2F8.2))/)
570*
571*
                STOP
               END
572*
```

	OUTPUT IS IN U.S. CUSTOMARY UNITS - DEGREES F, GPM, BTU												
	TH2-F 233.000	T A 2 - F 95 • C D J	TE2-F 44.000	TH1-F 270•000	TC1~F 85.000	TE1-F 54.000	TG-F 210.000	TC-F 112.00C	TA-F 105.000	TE-F 40.000	TON-REF	JREF 2	Case u
x	×1 •587	.643	CX1 .453	CX4 •420	69 12.607	65 145•916	GW 133.909	65C1 66•161	GWC4 56.197	E XP X • 000	CRATIO .849	UAX 119.237	
x	TA 105.000	T5 135.001	T3 168.705	TG 210.000	H1 -195.964	H5 -158.932	H7 2445.978	не 77.162	H10 2280.403	NTUX 2•122	EFFNX •714	COP •721	
E	G 1199•983	T1 54.000	12 44.000	T 40.000	NTU 1.253	EFFN •714	P 6.234	UA •150+04	q •120+05	GT •418+03	UAT -262+06	0T •174+P3	
A	1573.675	85.000	95.000	105.000	•693	•500	6.234	•109+04	•157+05	+548+N3	•190+06	.274+37	
c	1573.675	95.000	103.198	112.000	.658	•482	69.925	.164+04	-129+05	•548+03	•18n+n6	.224+07	
6	415.964	270.000	230.000	210.000	1.099	•667	69.925	.457+33	.166+05	•148÷03	•795+05	•290+07	
TEMP	DT12E 13.330	0TE2 4.003	TE2	DT12A 10.000	DTA2 10.533	TA2 95 • D∏D	DT12C 8.198	DTC 2 8 • 83 2	TC2 103.198	01126 40.00C	DTG2 20.000	TH2 230.00C	
	OUTPUT IS IN U.S. CUSTOMARY UNITS - DEGREES F, GPM, BTU												
	КТА 18	K C OP 15	KT0N2	KTON1	GHT-GPM 150.000	GCT-GPM 553.000	GET-GPM 417.6°0	TH1-F 273.470	TC1-F 80.000	TE1-F 50.428	TON-CAL 161.902	TON-START 181.0CU	Case 1
χ	×1 •588	X4 •651	CX1	CX4 •413	GP 11.978	GS 123.773	GW 111.794	GSC 1 56 • P45	GWC4 46•147	FXPX •671	CRATIC •823	UAX 104•353	
x	TA 130.341	75 129.187	T3 166.358	76 2 79 •364	H1 -200.533	H5 -161.478	H7 2445•731	H8 67.912	H10 2276.534	%TUX 2.261	EFFNX •735	.734	
E	5 1147.87u	T1 50.428	T <i>2</i> 39•974	ĭ 35•792	NTU 1.253	EFFN •714	P 5.276	UA • 144+04	.129+05	6T •418+03	UAT •262+06	07 •182+03	
A	1520.048	80.000	90.157	100.341	.692	.499	5.276	-105+04	.154+05	•553+Γ3	•191+16	•2°1•07	
c	1523.348	90.157	98.656	107.804	. 657	.482	61.929	•999+03	·129+05	•553+03	.182+06	.235+C7	
6	402.002	273.473	229.779	209.364	1.096	•666	61.929	.441+03	.164+05	•15C+P3	.au2+05	.298+07	
TEMP	DT12E 10•454	Γ TΕ 2 4•182	TE? 39.974	DT12A 16•157	DTA2 10.184	TA2 90•157	DT12C 8.499	DTC2 9 • 14 9	TC2 98.656	#1126 40.691	DTG2 20.415	TH2 229.779	
		0.017.0	T IS IN U•!	S. CUSTOMAI	RY UNITS -	DEGREES F	, GPM, BTU						
	K T A 18	K C OP 17	KTON2 2	KTON1	GHT-GPM 150.000	GCT-GPM 553.000	GET-GPM 417.67D	TH1-F 265.096	7C1-F 8C•000	7E1-F 50.081	TON-CAL 175.864	TON-START 172.000	Case 2
x	x1 •585	×4 • 645	CX1	CX4 •416	6P 11.966	GS 128.347	GW 116.381	GSC1 58.338	GWC4 48.422	EXPX •684	OITARD UF 8.	UAX 108.254	
x	TA 99•67G	75 128 • 275	T3 164.246	TG 206•075	H1 -201.447	H5 -163.724	H7 2442.486	H8 65.827	H10 2276.662	NTUX 2.236	EFFNX •731	COP •734	
E	G 1187.279	T1 50.081	T2 39.974	τ 35•931	NTU 1.253	EFFN •714	P 5∙306	UA •149+34	.120+05	GT •418+N3	UAT •262+06	0T •176+03	
A	1572.235	80.000	89.822	99.670	.692	.499	5.306	• 109+04	.154+05	•553+03	+191+06	.272+07	
c	1572.235	89.822	98.627	106.859	•657	.482	60.239	• 10 3 + 0 4	.129+F5	•553+n3	-182+6	•227+₽7	
6	415.804	265.096	225.703	206.075	1.096	• 666	60.239	.456+03	•163+05	-150+03	•802+°5	.287+07	
TEMP	DT12E 13.137	DTE2 4.043	TE2 39.974	DT 12A 9.822	DTA2 9.848	TA2 89•822	0112C 8.205	DTC2 8.832	TC2 98.027	DT12G 39.303	DTG2 19.718	TH2 225.793	

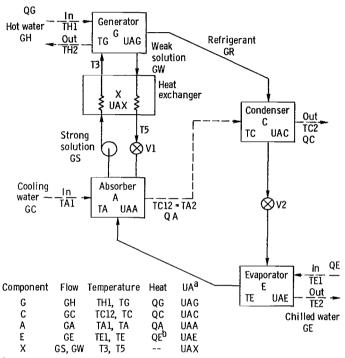
Sample 2: LiBr-H₂O Single-Stage Absorption Machine Used as a Subroutine in TRNSYS

```
SUBPOUTINE TYPE 17 (TIME, XIN, OUT, T, DTDT, PAR)
              COMMON /PR2/ TIMED, TFINAL, DELT
2*
        С
             USE THIS TO FVALUATE OUTPUT OF AN ABSORPTION MACHINE WITH FIXED --UA--
 3*
             ALL WATER SPECIFIC HEAT & DENSITY ASSUMED TO BE --1.C-- EXCEPT HOT WATER
44
        C
5*
              DIMENSION PAR(10), XIN(10), OUT(10)
 6*
              DIMENSION X(6),Y(6),GIN(3),XNTU(6),EFFN(6),PPR(6)
 7*
        C
8 *
        C--METRIC=L,BRITISH UNITS USED.-----JWRITE=1 WRITE ALL,JWRITE=D NO WRITE
            KLBHR=J.GPM FOR FLOW INPUT.----KLBHR=1. LBS/HR INPUT
Q ±
        C.
15*
               DATA METRIC/G/, KLBHR/1/, JWRTTE/1/
11*
               DATA METRIC/C/, KLBHR/1/, JWRITE/O/
12*
               DATA PDKG/.4536/
13*
               DATA
                     TFTC1/32./.TFTC2/1.8/
              DATA CALBTU/3.96831/
14*
15*
        C
             CONST1 & CONST4 ARF CONCENTRATION LIMITS
16*
        С
               DATA CONST1/0.4/, CONST4/0.68/
17*
18*
        С
             A-B-C-D-CONST ARE LIMITS FOR EVAP., ABSORP., COND., & GENERATOR
19*
              DATA ACONST/1./,BCONST/1.296/,CCONST/1.423/,DCONST/1.919/
20*
               DATA TELO/2.22/, TE2SET/4.43/
        С
21*
             COP LIMITS
                           --HEAT LOSS FACTOR
22*
               DATA COPHI/0.93/, COPLO/C.60/, FQG/1.0/
               EFFNX=0.71428
23*
        С
                                 FOR T5=135 F
                                                   EFFNX=(TG-T5)/(TG-TA)
24*
               DATA FFFNX/0.71428/
25*
        С
26≄
        С
27*
        С
28*
29*
               INPUTET
30*
          99C CONTINUE
31*
               H1=C.
               H5=0.
32*
               H7=3.
33*
34*
               H8=C.
35*
               H10=0.
36*
        C
        C
             -----UA VALUES ARE PER TON BASIS-----
37×
38*
              UAG = 456.981 *PDKG
39*
              UAC=1011.869*PDKG
              UAE = 1503.294*PDKG
4.7*
41*
              UAA=1102.8*PDKG
42*
              UAX = 118.929*PDKG
43*
              UAX 0=118.929*PDKG
44*
               GSD=144.077*PDKG
              GWC=131.323*PDKG
45*
46*
               GHO=150.786*500.*3.975
47*
               GEU=417.600 *500.
               GCG=553.674*500.
48*
49*
               TONE=174 .
        С
50*
51*
        C
52*
        C
        C.
534
54*
               PER (1)=UAG
55*
               PPR(2)=UAC
56*
               PFR (3)=UAE
57*
               PBR (4)=UAA
               PBR (5)=UAX
58*
59*
        C
               JREF=5
6 i . *
             7 CONTINUE
61*
               TONX=XIN(7)/12000.
62*
634
               TONREF=TOND*0.5
64 *
               TONMIN=TOND*C.1
               TONMAY=TOND*1.2
65*
```

```
66*
          C
               KLRHR=0.GPM GPM INPUT.--KLBHR=1.BPH INPUT FOR FLOW RATE
 67*
          С
 68*
                BPH=500.0
 69*
                IF(KLBHR.GT.O) BPH=1.C
 70*
          C
              9 CONTINUE
 71*
 72*
          C
               ----FLOW RATES ARE PER TON BASIS
 73*
          C
 74#
          C
                   PER TON BASIS
                TON=1.0
 75*
 76 *
                KTON1=U
 77*
                KTON2=0
 78*
                KTONX =-1
 79*
                X4=0.67
 85*
                X1=E.41
               S -- IS A CONTROL COST. -- S=0. OUT=INLET--S=1 OUT CALCULATED
 81*
 82*
                S=1.C
             11 CONTINUE
 83*
 84#
                65=650
                KCOP=3
 85*
             16 CONTINUE
 36*
                IF(COPX.LE.COPLO.OR.COPX.GE.COPHI) COPX=0.722
 87*
 88*
         C
 89#
         C
 90*
                    GH=XIN(1)/TONX*PDKG*BPH*G.975
                    GC=XIN(2)/TONX*PDKG*BPH
 91*
 92*
                    GE=XIN(3)/TONX*PDKG*BPH
 93*
                   THI=(XIN(4)-TFIC1)/TFTC2
 94#
                   TC1=(XIN(5)-TFTC1)/TFTC2
                   TE1=(XIN(6)-TFTC1)/TFTC2
 95*
 96*
                QE=3223.9573
 97*
                TC12=TC1
                TG=TH1
 984
 99*
                TA=TC1
100*
                TC=TC1
                TE=TE1
101*
42ن1
                T3=TA
183*
                T5=T6
                DO 6 I=1,7
1.14 +
155≉
                IF(XIN(I).LE.0.0001) S=0.6
156*
              6 CONTINUE
                IF(S.LE.J.3601)
                                  GO TO 5
107#
108≉
         C
               ASSUME TUBE SIDE WATER FILM COEF. IS CONTROLLING
         С
1474
                GH1=(XIN(1)/GHL)**0.8
110*
                GC1=(XIN(2)/GC3)**0.8
111#
112*
                GE1=(XIN(3)/GEC) **0.8
         C
113*
                TOTAL BASIS
                               IN METRIC UNITS
114*
                GIN(1)=GH/GH1*TONX
115*
                GIN(2)=GC/GC1*TONX
116*
117*
                GIN(3)=GE/GF1*TONX
         C
118*
119*
                DO 10 I=1.4
120*
                IF(GIN(I).LE.C.U) 60 TO 8
               XNTU(])=PBR(I)/GIN(I)*1.0*TONC
121*
               IF(I.FQ.4) XNTU(I)=PBR(I)/6IN(2)*TONO
122*
123*
                IF(XNTU(I).GE.10.) GO TO 8
               EFFN(I)=1.0-EXP(-XNTU(I))
124*
125*
               GO TO 10
126*
             S CONTINUE
               EFFN(T)=0.999
127*
            10 CONTINUE
128*
129*
         С
         C
130*
             5 CONTINUE
131*
               IF(TIME.LE.TIMEQ.OR.TE1.LE.TE2SET) TE1=TE2SET
132*
```

```
133*
                IF(TE1.LE.TE2SET)
134*
                TE2=TF1-QE/GE*S
135*
                TH2 TH1 - (QE / COPX) / GH + S
136*
                TC2=TC1+(1.3+1.0/COPX)*0E/GC*S
                 IF(S.LE.C.9001) GO TO 80
137*
138*
         C
139*
                TE=TE1-(TE1-TE2)/EFFN(3)
140*
                T6=TH1-(TH1-TH2)/EFFN(1)
141*
         C
               ASSUMED A VALUE FOR
142*
                TA2=(TC1+TC2)*0.5
143*
                TATTC1-(TC1-TA2)/EFFN(4)
144#
                K TA = E
145*
             15 CONTINUE
146*
         C
                IF(TA.LE.(TC1+1.D)) 60 TO 43
147*
                TC=TC2/EFFN(2)-(1.0/EFFN(2)-1.0)*(TC1+EFFN(4)*(TA-TC1))
148*
         €
149*
         C
                IF(TC.LE.TA) GO TO 40
150*
151*
                IF(TE.GE.TA) GO TO 41
152*
                IF(TC.GE.TG) GO TO 41
153*
         C
154*
                 X1=(49.04+1.125*TA-TE)/(134.65+3.47*TA)
155*
                 X4=(49.04+1.125*TG-TC)/(134.65+0.47*TG)
156*
                IF(X1.LT.CONST1) GO TO 45
                IF(X4.LE.X1) GO TO 43
157*
158*
         C
159#
                HR=TC-25.0
160*
                H1G=572.8+0.417*TE
                GR=0E/(H10-H8)
161#
162*
                GS=GR*X4/(X4-X1)
163*
                GW=GS*(X1/X4)
164#
         C
165*
                CX1=1.D1-1.23*X1+0.48*X1**2
                CX4 01.01-1.23 + X4 + 0.48 + X4 + + 2
166*
167*
                G5C1=GS *CX1
168*
                GWC4=GW*CX4
                CRATIO=GWC4/6SC1
169#
170*
         C
              ASSUMING ORIGINAL FILM COEF. EQUAL ON BOTH SIDES. -- GW ON SHELL STDE
171*
         С
172#
               F1=2.0
173*
                F2=1.0
           F1=2,F2=1,HGS=HGW.--F1=1,F2=0,HGS>>HGW.--F1=2.5,F2=2/3,HGS=1.5HGW. FOR UAX
174#
                RCS=((GS_/GS)*(TONO/TONX))**G.8
175*
                RGW=((GWG/GW)*(TONG/TONX))**6.6
176*
                UAX = F1 * UAX 0 * (1.0/(RGS + F2 * RGW))
177±
178*
         С
179#
                 IF (GWC4.GT.GSC1) GO TO 17
                XNTUX=UAX/GWC4*(TONO/TONX)
18 O *
181*
                GC TO 18
182*
         C
             17 CONTINUE
183*
184*
                XNTUX=UAX/GSC1*(TONG/TONX)
185*
                CRATIO=6SC1/6WC4
             18 CONTINUE
186*
187*
         C
188*
                IF(ABS(1.D-CRATIO).LT.J.31) GO TO 13
189#
                IF ((XNTUX+(1.-CRATIC)).GE.10.)
                                                  30 TO 12
190*
                EXPX=EXP(-XNTUX*(1.C-CRATIO))
191*
                EFFNX=(1.3-EXPX)/(1.J-CRATIO*EXPX)
192*
                GO TO 14
193*
         C
194*
             12 CONTINUE
195*
                EFFNX=L.999
196*
                60 TO 14
197*
             13 CONTINUE
198*
                EFFNX=XNTUX/(1.0+XNTUX)
199*
            14 CONTINUE
```

```
230*
         С
231*
         €
                T5=TG-EFFNX*(TG-TA)
202*
203*
                T3:TA+(EFFNX*CRATIO*(TG-TA))
         С
2344
2J5*
                H1=(42.81-425.92*X1+404.67*X1**2)+CX1*TA
                H5= (42.81-425.92*X4+404.67*X4**2)+CX4*T5
206*
                H7=572.8+0.46+TG-0.043+TC
237*
         C
208*
209*
         C.
               FQG=1.0,NO HEAT LOSS.--FQG>1.5,8<2.0,% HEAT LOSS
                IF(FQG.LE.1.0) FQG=1.0
210*
                QG= (GW*H5-GS*H1+GR*H7)*FQG
2114
                QC=GR*(H7-H8)*(1.0+QG/(QG+QE)*(1.0-FQG))
212*
                QA= (GW+H5-GS+H1+GR+H1C)+(1.C+QG/(QG+QE)+(1.D-FQG))
213#
214#
                COP=OF/OG
215*
         C
216*
                TC12=TC1+QA/GC
                IF(TC12.GE.TC2) TC12=TC1+1.0
217#
                TAX=TC1-(TC1-TC12)/FFFN(4)
218#
219#
         C
220#
             40 CONTINUE
221#
                IF(TC.LE.TA) TAX=TC
222*
                IF(ABS(TAX-TA).LT.0.000001) GO TO 41
                IF(KTA.EQ.59) GO TO 41
223*
224#
                TA=(TAX+TA) *0.5
225*
                KTA=KTA+1
226*
                GO TO 15
227#
             41 CONTINUE
         C
228*
229*
                IF(APS(COPX-COP).LT.G.CCCC1) GO TO 42
                IF(KCOP.E0.50) GO TO42
230*
231*
                COPX=(COPX+COP) #0.5
232*
                KCOP=KCOP+1
233*
                GC TO 16
             42 CONTINUE
234*
235*
         r
236*
                X(1)=TE2-TE
237*
                X(2)=TA-TC12
238*
                X (3)=TC-TC2
239#
                X (4 ) = TH2 - TG
                Y(1)=ACONST
240*
241*
                Y (2) = BCONST
                Y(3)=CCONST
242*
243*
                Y (4) = DCONST
244*
         С
                DO 47 I=1,4
245*
                IF(X(I).LT.Y(I).AND.KTONX.EQ.1) GO TO 61
246*
                IF(X(I).LT.Y(I)) GO TO 45
247*
248*
             47 CONTINUE
249#
         С
250*
                IF(X1.GT.CONST1.AND.X4.LT.CONST4.AND.X4.GT.X1) GO TO 46
251*
         C
252*
            45 CONTINUE
253*
                IF(KTCN2-100) 49,43,43
254*
            49 CONTINUE
255*
                TONMIN=TONX
256*
                TONX=(TONX+TONMAX) *C.5
                I TO NX=IFIX ( TONX )
257*
258*
                TONX = FLOAT (ITONX)+1.3
                KTON2=KTON2+1
259*
260*
                GO TO 11
261*
            43 CONTINUE
262*
263*
                IF(KTON1-198) 44,50,50
            44 CONTINUE
264*
265*
                TONMAX=TONX
                TCNX=(TONX+TONMIN) + -. 5
266*
```


```
267*
                I TONX = IF IX (TONX)
268*
                IF(TON-LE-1-0-AND-TONX-LE-(TONMIN+1-0)) GO TO 50
269*
                IF(TONX.LE.TON)
                                      GO TO 50
275*
                TONX=FLOAT(ITONX)-1.0
                KTON1=KTON1 • 1
271*
                60 TO 11
272*
273*
         C
             46 CONTINUE
274*
                IF(KTONX.EQ.1.OR.TONX.LE.D)
                                                      GO TO 60
275*
276*
                IF(TON.GE.TONX) 60 TO 50
               CHECK MAX. STRONG SOLUTION PUMP RATE ------
277*
         C
                GSTC=GSC*TOND
278*
279*
                GSPUMP=GS*TONX
289*
                IF(GSPUMP.GT.GSTD) GO TO 43
281*
         C
282*
                TON=TONX
                IF(TE2.LT.TE2SET.OR.TE.LE.TELO) GO TO 48
283*
284*
                GO TO 49
285*
             48 CONTINUE
286*
                TON=TON*(TE1-TE2SET)/(TE1-TE2)
287#
         C
288*
             50 CONTINUE
289*
                IF(KTONX.EQ.1)
                                      60 TO 66
290*
                TONX=TON
291*
                IF(TON.LE.1.0) S=0.0
292*
                KTONX=1
293*
                GO TO 11
294*
         C
295*
             60 CONTINUE
296*
         C
297*
         С
298*
         C----ALL SPEC HEAT = 1. ------
299*
                UAG = XNTU(1) *GH
300*
                UAC=XNTU(2) *GC
3C1*
                UAE = XNTU(3) +GE
302*
                UAA=XNTU(4)*GC
303*
         C
3044
                A = ALOG(10.0)
                B=1555.0/(TF+273.15)
3:15*
306*
                C=11.2414E4/(TE+273.15)**2
307*
                PE=EXP(A*(7.8553-B-C))
328*
                B=1555.3/(TC+273.15)
339*
                C=11.2414E4/(TC+273.15)**2
310*
                PC=EXP(A*(7.8553-8-C))
311*
         C.
             8G CONTINUE
312*
313*
                QG=QG*CALBTU
314*
                QC=QC*CALBTU
315*
                QE=QE *CALBTU
                QA=QA*CALBTU
316*
317*
                HI=HI*CALBIU
318*
                H5=H5*CALBTU
319*
                H7=H7#CALBTU
320*
                H8=H8*CALBIU
321*
                H1G=H1G*CALBTU
322*
          С
                T3=T3*TFTC2+TFTC1
323*
324#
                T5=T5*TFTC2+TFTC1
325*
         С
                TH1=TH1+TFTC2+TFTC1
326*
327*
                TH2=TH2 *TFTC2 *TFTC1
                TC1=TC1*TFTC2+TFTC1
328*
329×
                TC12=TC12*TFTC2+TFTC1
330*
                TA2=TC12
                TC2=TC2*TFTC2+TFTC1
331*
332*
                TF1=TE1+TFTC2+TFTC1
                TF2=TF2*TFTC2+TFTC1
333*
```

```
334*
                 TE =TE *TFTC2+TFTC1
                 TA =TA *TFTC2+TFTC1
335*
336#
                 TC =TC *TFTC2+TFTC1
337*
                 IG = TG * TFTC2 + TFTC1
 338*
          С
339*
                 UAG=UAG/PDKG
340*
                 UAC=UAC/PDKG
341*
                 UAE = UAE / PDKG
342*
                 UAA=UAA/PDKG
34 3 ★
                 UAX=UAX/PDKG
                 GH=GH/PDKG
344*
345*
                 GC=GC/PDKG
346*
                 GA=GC
347*
                 GE=GE/PDKG
348*
                 GR=GR/PDKG*S
349*
                 GW=GW/PDKG*S
350+
                 GS=GS/PDKG*S
351*
                 GSC1=GSC1/PDKG*S
352×
                 GWC4=GWC4/PDKG*S
353*
          C
354*
                 QGT=QG*TON*S
355*
                 QCT=QC*TON*S
356*
                 QET=TON
357*
                 OAT = OA * TON * S
358*
                 UAGT=UAG*TON
359¥
                 UACT=UAC*TON
                 UAET=UAE * TON
360*
361*
                 UAAT=UAA*TON
362*
                 GHT=GH*TON/8PH/0.975
363*
                 GCT=GC*TON/BPH
364*
                 GATEGET
365*
                 GET=GE*TON/BPH
366*
                 DT12E=TE1-TE2
                 DT12A=TA2-TC1
367#
368*
                 DT12C=TC2-TA2
369*
                 D T12G=TH1-TH2
370*
                 DTE 2=TE 2-TE
371×
                 DTA2=TA-TA2
372*
                 DTC2=TC-TC2
                 DTG2=TH2-TG
スフス≠
374*
          C
375*
          C
376*
                 IF(JWRITE.EQ.0) 50 TO 59
377*
                 IF(AMOD(TIME, 1.000).GT.DELT) GO TO 500
378*
                 WPITE(6,95)
379*
                 TONXIN=XIN(7)
38D#
                 XIN(7)=TONXIN/12000.
                 WRITE(6,98) KTA, KCOP, KTON2, KTON1, (XIN(I), I=1,6), TONX, XIN(7), INPUT
381*
382*
                XIN(7)=TONXIN
                WRITE(6,403)
383*
384#
                WRITE(6,402) X1,X4,CX1,CX4,GR,GS,GW,GSC1,GWC4,EXPX,CRATID,UAX
385*
                WRITE(6,407)
386*
                WRITE(6,402) TA, T5, T3, TG, H1, H5, H7, H8, H10, XNTUX, EFFNX, COP
387*
                WRITE(6,406)
388*
                WRITE(6,405) GE,TE1
                                                    ,XNTU(3),EFFN(3),PE,UAE,QE,GET,UAE
                                         ,TE?,TE
389*
               XT,QFT
390*
                WRITE(6,404) GA,TC1
                                         ,TA2,TA
                                                    ,XNTU(4),EFFN(4),PE,UAA,QA,GAT,UAA
391+
               XT,QAT
392*
                WRITE (6,401) GC, TA2, TC2, TC
                                                ,XNTU(2),EFFN(2),PC,UAC,QC,GCT,UACT,Q
393*
               XCT
394*
                WPITE(6,400) GH, TH1
                                         ,TH2,TG
                                                    ,XNTU(1),FFFN(1),PC,UAG,Q5,GHT,UAG
395*
               XT-QGT
396*
            40D FORMAT(1x,4HG---,7F10.3,5E13.3//)
397#
            401 FORMAT(1X,4HC---,7F10.3,5E10.3/)
398*
            402 FORMAT(1X,4HX---,12F1C.3/)
            403 FORMAT(5X,120H
399*
                                       X 1
                                                  X4
                                                              CX1
                                                                         C X 4
                                                                                    GR
400*
                   GS
                                        GSC1
                                                   GWC4
                                                               EXPX
                                                                         CRATIO
                                                                                      UAX
               X
                              GN
```

```
X
401*
           404 FORMAT(1x,4HA---,7F1G.3,5E10.3/)
462*
           405 FORMAT(1X,4HE---,7F10.3,5E10.3/)
≉3ن4
           406 FORMAT(5X,120H
                               G
                                               T 1
                                                         T2
                                                                             NTU
424*
                                                                     UAT
                                                                                0 T
405*
             X EFFN
                            Р
                                       UA
                                                           GI
456*
              X
                  •
407*
           407 FORMAT(5X+120H
                                     TΑ
                                               T 5
                                                         T 3
                                                                   TG
                                                                   EFFNX
                                                                                COP
                                                 H10
                                                         NTUX
4 £ 8 *
             X H5
                            H7
                                       н8
439*
              X
                  •
         С
410*
411*
               WRITE(6,96)
412*
               WRITE(6,97) DT12E,DTE2,TE2,DT12A,DTA2,TA2,DT12C,DTC2,TC2,DT12G,DTG
413*
              X2,TH2
                                                      KTON2
                                                                 KTON1
                                             KCOP
                                                                         GHT-GPM
            95 FORMAT(5X+127H
414*
                                 KTA
             X GCT-GPM GET-GPM
XART NO. )
415*
                                   TH1-F TC1-F
                                                       TE1-F
                                                                  TON-CAL TON-ST
416#
                                                                  DT12A
                                                                             DTA2
            96 FORMAT(5X,120H
                                             DTE2
                                                        TE2
417*
                                   DT12F
418*
             X TA2
                          DT12C
                                     DTC2
                                                TC2
                                                          DT126
                                                                     DT62
                                                                               TH2
419*
              X 3
            97 FORMAT(1X,4HTEMP,12F10.3///)
42C*
421*
            98 FORMAT(5X,4(18,2X),8F10.3,3X,13/)
            99 FORMAT(7F10.1)
422*
423#
         С
            59 CONTINUE
424*
           500 CONTINUE
425#
               OUT (1)=TH2
426*
427*
               OUT (2)=XIN(1)
               OUT (3)=TON*OE
428*
429*
               OUT (4)=TH2
430*
               OUT (5)=06T
431*
               OUT (6)=TE2
432*
               OUT (7)=XIN(3)
433*
               OUT (8)=TC2
               OUT (9)=XIN(3)
434*
435*
               OUT(10)=TON*QE
436*
         C
437*
               INPUT=1+INPUT
               RFTURN
438*
               STOP
439*
         C
440*
               E ND
```

REFERENCES

- 1. TRNSYS A Transient Simulation Program. Solar Energy Lab, University of Wisconsin, Madison, Wisconsin, 1974.
- Lansing, F. L.: Computer Modeling of a Single-Stage LiBr-H₂O Absorption Refrigeration Unit. Deep Space Network. JPL-PR-42-32, 1976, pp. 247-257.
- 3. Ellington, R. T.; et. al.: The Absorption Cooling Process. Research Bulletin 14, Institute of Gas Technology, 1957.
- 4. ASHRAE Handbook of Fundamentals. American Society of Heating, Refrigeration, and Air-Conditioning Engineers, Inc., 1972.
- 5. Kays, W. M., and London, A. L.: Compact Heat Exchangers. McGraw Hill Book Co., Inc., 1958.
- 6. Absorption Cold Generator. DS-ABS1, TRANE Co., LaCrosse, Wis. 54601, 1974.
- 7. McAdams, William H.: Heat Transmission. Third ed. McGraw-Hill Book Co., Inc., 1954.

^aUA = Product of overall heat-transfer coefficient and its surface area.

bQE = 1 TON; QET = Total (not shown with total flows, heats, and UA's).

Figure 1. - Flow diagram of single-stage LiBr-H2O absorption unit.

1. Report No. NASA TP-1296 4. Title and Subtitle SIMULATION MODEL OF A S. BROMIDE - WATER ABSORP 7. Author(s) David Miao 9. Performing Organization Name and Address National Aeronautics and Spac Lewis Research Center Cleveland, Ohio 44135 12. Sponsoring Agency Name and Address National Aeronautics and Spac Washington D.C. 20546	TION COOLING UNIT	3. Recipient's Catalog No. 5. Report Date August 1978 6. Performing Organization Code 8. Performing Organization Report No. E-9547 10. Work Unit No. 776-22 11. Contract or Grant No. 13. Type of Report and Period Covered Technical Paper 14. Sponsoring Agency Code					
Washington, D.C. 20546 15. Supplementary Notes 16. Abstract A computer model of a LiBr-H ₂ O single-stage absorption machine has been developed. The model, utilizing a given set of design data such as water-flow rates and inlet or outlet temperatures of these flow rates but without knowing the interior characteristics of the machine (heat transfer rates and surface areas), can be used to predict or simulate off-design performance. Results from 130 off-design cases for a given commercial machine agree with the published data within 2 percent.							
17. Key Words (Suggested by Author(s)) Absorption machine; LiBr-H ₂ O; Cooling unit; Air conditioning; Refrigeration; Solar cooling 18. Distribution Statement Unclassified - unlimited STAR Category 44							
19. Security Classif. (of this report) Unclassified	20. Security Classif. (of this page) Unclassified	21. No. of Pages 22. Price 42 A03					

National Aeronautics and Space Administration

Washington, D.C. 20546

Official Business
Penalty for Private Use, \$300

THIRD-CLASS BULK RATE

Postage and Fees Paid National Aeronautics and Space Administration NASA-451

6 1 1U,E, 072878 S00903DS DEPT OF THE AIR FORCE AF WEAPONS LABORATORY ATTN: TECHNICAL LIBRARY (SUL) KIRTLAND AFB NM 87117

POSTMASTER:

If Undeliverable (Section 158 Postal Manual) Do Not Return